Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 1 of 8

SOP30102: Preparation of Matrigel-Coated Flasks for Adherent Patient-Derived In Vitro Cultures

Effective Date: 2/28/2022

Please check for revision status of the SOP at

https://pdmr.cancer.gov/sops/

PDMR NCI Patient-Derived Models Repository
An NCI Precision Oncology Initiative Resource

TABLE OF CONTENTS

1.0	PURPOSE/SCOPE	3
	SAFETY	
	CLEAN-UP	
4.0	EQUIPMENT	∠
	PROTOCOL 1: MATRIGEL®-COATED FLASKS	
	PROTOCOL 2: BME-COATED FLASKS	

Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 2 of 8

VERSION INFORMATION

1. Change History

Revision	Description
	Internal SOP used by PDMR In Vitro Laboratory
10/15/2017	Standardize SOP for posting to PDMR internal site for use by designated NCI intramural laboratories
5/14/2018	Updated reference SOPs and Purpose/Scope section
9/6/2018	Clarify steps in Matrigel coating and length of time for storage before use.
1/16/2019	Added the need for Pen/Strep in the coating solution. Streamlined protocol for readability.
2/28/2022	Added protocol for coating flasks with Basement Membrane Extract (BME)

2. Related SOPs

SOP30103: Initial Culture, Sub-culture, and Cryopreservation of Adherent Patient-Derived Tumor Cultures (PDCs)	
SOP30105: Initial Culture and Sub-culture of Patient-Derived Cancer-Associated Fibroblasts (CAFs)	

Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 3 of 8

1.0 PURPOSE/SCOPE

This Standing Operating Procedure (SOP) describes preparation of Matrigel-coated or BME-coated plates for successful thawing and early culture of adherent Patient-Derived Tumor Cultures (PDCs) and Cancer-Associated Fibroblasts (CAFs) under BSL-2 safety criteria.

This SOP is used/performed by the Biological Testing Branch (BTB) at NCI-Frederick, Frederick National Laboratory for Cancer Research.

2.0 SAFETY

BTB treats all patient-derived in vitro cell cultures under Biosafety Level 2 (BSL2) conditions even when PCR-based screening has not detected the presence of a known set of human pathogens. All work is conducted in a biological safety cabinet (BSC) using personal protective equipment and avoiding the use of sharps where possible. All materials potentially exposed to the cell cultures are disinfected by exposure to a 10% bleach solution for a minimum of 10 minutes, double bagging for autoclaving or incineration. Consult with your facility safety professionals regarding the safe handling of BSL2 studies.

3.0 CLEAN-UP

- 3.1 All materials in contact with patient tissue, as well as the mice carrying patient tumor samples and cultures derived from patient tumor samples, are treated as a potential health threat (BSL-2 precautions) since the human tissues could retain human pathogenic agents even if they do not replicate in mouse cells (e.g., EBV, HPV, etc).
- 3.2 Flush/soak any items (e.g., tubes, syringes, petri dishes, lab mats, etc) that were in contact with human tissue with disinfectant (e.g., 10% bleach, commercial hydrogen peroxide disinfectant, 2% Virkon®) for a minimum of 10 minutes before disposal in biohazard waste or sharps containers (follow institutional guidelines and manufacturer's recommendations).
- **3.3** For items that can't be rinsed (e.g., micropipettors), wipe down thoroughly with bleach-soaked gauze or other appropriate disinfectants.

Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 4 of 8

4.0 EQUIPMENT

- **4.1** Equipment
 - **4.1.1** 50-mL, 25-mL, 10-mL, 5-mL pipettes, sterile
 - **4.1.2** 15 and 50-mL polypropylene tubes, sterile
 - **4.1.3** Tissue Culture flasks, sterile, vented
 - **4.1.4** Pipetman and sterile tips
 - **4.1.5** Waste container Bleach (Clorox, 5.25% Hypochlorite) diluted 1:10, 2% Virkon®, or similar disinfectant
 - **4.1.6** Refrigerator (4° C) and freezer (-20° C)
 - **4.1.7** 37°C Incubator (5% CO₂, humidified)
 - **4.1.8** Biological Safety Cabinet (BSC) meeting biosafety level 2 (BSL2) standards
 - **4.1.9** Personal Protective Equipment (PPE) at a minimum laboratory coat, with fitted sleeves, latex or nitrile gloves and safety glasses

Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 5 of 8

5.0 PROTOCOL 1: MATRIGEL®-COATED FLASKS

- **5.1** Reagents
 - 5.1.1 1X HAM's F-12 Nutrient Mix, with L-glutamine (Invitrogen, Cat#: 11765-047) with 100 U/mL Pen/Strep final (Invitrogen, Cat#: 1514022, 10000 U/mL)
 - **5.1.2** Matrigel® Matrix
 - 5.1.2.1 Matrigel®, High concentration (BD Biosciences, Cat#: 354248)

OR

5.1.2.2 Matrigel®, Standard concentration (BD Biosciences, Cat# 354234)

IMPORTANT: All Matrigel® purchases should be submitted specifying PCR-tested LDEV-Negative Matrigel®. If not, there is a possibility of LDEV contamination which can result in LDEV+ tumors

- **5.2** Prepare Matrigel® Working Solution
 - **5.2.1** Chill pipettes and conical tubes in a -70°C freezer overnight and then place on wet ice prior to use.
 - **5.2.2** Thaw Matrigel® overnight by placing a vial of Matrigel, buried in ice, in the refrigerator.
 - **5.2.3** Using cold pipettes and tubes, make a Matrigel® Working Solution with 1X HAM's F-12 Nutrient Mix, with L-glutamine, + Pen/Strep.
 - 5.2.3.1 Make a 25% Matrigel Working Solution if using High Concentration
 - 5.2.3.2 Make a 50% Matrigel Working Solution if using Standard Concentration
 - 5.2.4 Aliquot Matrigel® Working Solution either as 5-mL aliquots into chilled sterile 15-mL conical tubes or 1-mL aliquots into 2-mL sterile screw-capped tubes and place into a -20°C freezer.

Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 6 of 8

- **5.3** Preparation of Matrigel®-coated flasks
 - **5.3.1** The day before coating, remove the appropriate number of Matrigel® Working Solution aliquots (prepared in Section 5.2) from the freezer and thaw overnight buried in ice, in the refrigerator.
 - **5.3.2** The recommended volume of 2.5% Matrigel needed per well/flask are:

Plate/Flask size	Volume 2.5% Matrigel®/well or flask
96-well plate	75 μL/well
24-well plate	0.3 mL/well
6-well plate	2 mL/well
T25 flask	3.0 mL
T75 flask	6.0 mL
T162 flask	8.0 mL

- 5.3.3 Prepare a 2.5% Matrigel solution using the 25% or 50% Matrigel Working Solution in 1X HAM's F-12 Nutrient Mix, with L-glutamine, + Pen/Strep. Keep solution chilled.
- **5.3.4** Coat Tissue Culture Plates/Flasks with 2.5% Matrigel® Solution
 - 5.3.4.1 Matrigel® coated plates/flasks should be prepared at least 1 hour before use.
 - 5.3.4.2 Using sterile procedures, coat the growth surface of the plate/flask using the recommended volume based on the size of the well/flask (Section 5.3.2). Be sure to rock the plate back and forth to completely coat the surface of the plate/flask.
 - 5.3.4.3 Incubate plates/flasks for a minimum of 30 minutes at ambient temperature for polymerization. This process can be enhanced by incubating in a 37°C incubator.
 - 5.3.4.4 Immediately before use, remove excess media from the flask/plate and discard taking care to not dislodge the Matrigel® coating.
 - Flasks can be prepared up to 7 days before use and stored at 4°C following the polymerization step (leave excess media on flask/plate until use). Bring to ambient temperature or 37°C before adding cells.

Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 7 of 8

6.0 PROTOCOL 2: BME-COATED FLASKS

- **6.1** Reagents
 - 6.1.1 1X HAM's F-12 Nutrient Mix, with L-glutamine (Invitrogen, Cat#: 11765-047) with 100 U/mL Pen/Strep final (Invitrogen, Cat#: 1514022, 10000 U/mL)
 - **6.1.2** CultrexTM Basement Membrane Extract (BME), PathClear[®], with Phenol Red, 8-12 mg/mL stock (R&D Systems, Cat# 3432-005-01P)
 - 6.1.2.1 A lot-specific Certificate of Analysis is included in each CultrexTM BME shipment noting exact protein concentration.
 - 6.1.2.2 Phenol Red is used as a visual indicator of coated plates
- **6.2** Prepare CultrexTM BME Working Solution
 - **6.2.1** Thaw Cultrex[™] BME overnight by placing a vial of BME, buried in ice, in the refrigerator.
 - **6.2.2** Using pipettes and chilled tubes, dilute the 100X Phenol Red solution to 1X in BME. Note: pipettes can be room temperature
 - 6.2.3 Aliquot the CultrexTM BME solution with 1X Phenol Red either as 5-mL aliquots into chilled sterile 15-mL conical tubes or 1-mL aliquots into 2-mL sterile screw-capped tubes and place into a -70°C freezer.
- **6.3** Preparation of CultrexTM BME-coated Flasks
 - **6.3.1** The day before coating, remove the appropriate number of Cultrex™ BME solution with 1X Phenol Red aliquots (prepared in Section 6.2) from the freezer and thaw overnight buried in ice, in the refrigerator.
 - **6.3.2** The recommended volume of 2.5% BME needed per well/flask are:

Plate/Flask size	Volume 2.5% BME/well or flask
96-well plate	75 μL/well
24-well plate	0.3 mL/well
6-well plate	2 mL/well
T25 flask	3.0 mL
T75 flask	6.0 mL
T162 flask	8.0 mL

6.3.3 Prepare a 0.46-0.48 mg/mL BME Working Solution containing ice-cold 1X Phenol Red with 1X HAM's F-12 Nutrient Mix, with L-glutamine, + Pen/Strep. Keep solution chilled.

Laboratory: Patient-Derived Models Repository

Revision Date: 2/28/2022 Page 8 of 8

6.3.4 Coat Tissue Culture Plates/Flasks with 0.46-0.48 mg/mL BME Working Solution

- 6.3.4.1 BME coated plates/flasks should be prepared at least 1 hour before use.
- 6.3.4.2 Using sterile procedures, coat the growth surface of the plate/flask using the recommended volume based on the size of the well/flask (Section 6.3.2). Be sure to rock the plate back and forth to completely coat the surface of the plate/flask.
- 6.3.4.3 Incubate plates/flasks for a minimum of 1 hour at ambient temperature for polymerization. This process can be enhanced by incubating in a 37°C incubator.
- 6.3.4.4 Immediately before use, remove excess media from the flask/plate and discard.
 - Flasks can be prepared up to 7 days before use and stored at 4°C following the polymerization step (leave excess media on flask/plate until use). Bring to ambient or 37°C before adding cells.